Enhancing Trust in Al-Driven Healthcare:
Transparent Data Use with Semantics

Pol Nachtergaele - PhD Student @ KNoWS UGent

(@) Pol.Nachtergaele@UGent.be

|:| +32 497 27 92 75

Table of Contents

~ Context

~ Al-Driven Healthcare in a solid environment

~ Problem
~ Why is trust important in Al-Driven Healthcare

~ Solution

~» Implementation

Patient data comes from many sources

loT: Wearables, Smart scales, ...

O A D GP, Physiotherapist, ...
HOA

\n:/@%é

£

Hospital-based HCPs

Consolidate data in personal data pod

loT, Wearables, Smart home sensors, ...

iG)‘ D @ /ﬂ\\ GP, Physiotherapist, ...

O

How do we use this data?

£

Hospital-based HCPs

Al-Driven Healthcare

Primary use: direct patient care
~ Diagnosis
Treatment eligibility ———

~»
~ Remote patient monitoring 9
» nnn

Secondary use: beyond direct care
~ Medical Research
»~ Policy-making
~ General trends
. O

Al-Driven Healthcare

~ Many data stakeholders

fo

&
EE
@,

Al-Driven Healthcare

~ Many data stakeholders
~ Processing personal data with Al

Qaa\

Using Al models .
Oaa/ N

Oaa\ &

Training Al models

fo

How do | trust Al models?

~ Many interested data stakeholders How do | trust results?

~ Processing personal data with Al

How do | exercise my rights?
How do | trust other parties?

B —if)
' o)

[
Can | use your data?

~ Without trust:
~ Processed results are meaningless
~ Data doesn’t get used

~ Increase trust with transparency:
~ What will you do with my data?
» Where does data come from?
» How was data processed?

~ Demystify the processing pipeline:
~ Heterogenous components

JS

» Complicated code

i people.data.users:
response - client.api.statuses.user_timeline.get(screen_name-i.scre
'Got', len(response.data), 'tweets from', i.screen_name
len(response.data)
ltdate - response.data[0] ['created_at']
ltdate2 - datetime.strptime(ltdate,’ I 19M: +0000
today - datetime.now()
howlong = (today ltdate2).days
howlong < daywindow:

i.screen_name, 'has tweeted in the past' , daywindow,
totaltweets len(response.data)
j response.data:
j.entities.urls:
k j.entities.urls:
newurl = k['expanded_url']
urlset.add((newurl, j.user.screen_name))

i.screen_name, 'has not tweeted in the past', daywind

10

» Adding a semantic layer on top of a processing pipeline
» Provide understanding by describing functionality
» Function Ontology (FnO)

» Ensure transparency by describing how and when data is
executed
» Provenance Ontology (PROV-0)

11

Overview

Provide understanding

FnO Structure
From Source Code to FnO

Describing Complex Pipelines

Ensure transparency

PROV-0O Structure

Execute FnO with Provenance Capture

12

Providing understanding

How to show a person what will be done with their data

» Describe the data flow independent of the
implementation framework

» Three main components:

FnO Composition FnO Implementation

FnO Function

* Internal structure Inputs / Outputs * Python Function,

 Complex workflows What does it do Docker_lmage,
composed of Javascript, ...

w https://fno.io/ 14

https://fno.io/

@ From Source Code to FnO

» Developers do not “care” about transparency

» Write code = Automatic annotation with FnO = Transparent code

FnO Composition FnO Implementation

FnO Function

* Internal structure Inputs / Outputs * Python Function,
Docker Image,

Javascript, ...

« Complex routines What does it do
composed of

FnO Mapping

\ J \)
I I

Parser: Identify data flow from source code Mapper: Extract metadata to enable
execution

15

‘ From Source Code to FnO

» Python example
» Parser:

controller(conf, act dict inverse, model, data):

data =]process data(conf, data)

if (data
if (len(data) > conf[min_duration s'] * conf[frequency']):
' h_making predictions"')

]))
datal set 1ndex(T1mestamp , inplace =)

fs dict = {}
for name in data.columns:
s _dict[name] = conf['frequency']

chunks = chunk data(data=data,fs dict=fs dict, min_chunk dur="15s")

‘ From Source Code to FnO

» Python example
» Parser: Data flow by connecting variables

controller(conf, act dict inverse, model,|data):

data =|pr‘ocess_data(conf, data;
1T {data :

1N (len(data) > conf['min_duration s'] * conf['frequency']):

: making predictions')
datall set_index("Timestamp", inplace =

fs dict = {}
for name in data.columns:
s _dict[name] = conf['frequency']

chunks = chunk data(data=data,fs dict=fs dict, min_chunk dur="15s")

‘ From Source Code to FnO

Python example
» Parser: Data flow by connecting variables
~ Mapper: specify file, package, ...

controller(conf, act dict inverse, model,|data):

data =|pr‘ocess_data(conf, data;
1T {data :

1N (len(data) > conf['min_duration s'] * conf['frequency']):

: making predictions')
datall set_index("Timestamp", inplace =

fs dict = {}
for name in data.columns:
s _dict[name] = conf['frequency']

chunks = chunk data(data=data,fs dict=fs dict, min_chunk dur="15s")

@ From Source Code to FnO

Python file

Function

19

@ From Source Code to FnO

Function

Function Function

Function

‘ Describing complex pipelines

» Multiple levels of detail:
» From pipeline components to individual lines of code
» Docker container = Python file = line of code = imported function

» Model dataflow across implementation frameworks:

» Identify points where frameworks meet: RUN python file.py in dockerfile
~ Under development

21

Ensuring transparency

How to show a person what happened with their data

‘ PROV-0 Structure

» Describe the lifecycle of data, detailing how and
when it was processed

» Three main components:

Entity Activity
- Things that change ALAUZCICRUANE « Uses entities to
over time create new entities

Data objects Used Execution

23

Execute FnO with Provenance Capture

» QOrchestrator: execute an FnO pipeline/function
1. Look for implementation
2. Get executable version
3. Execute with data

24

‘ Execute FnO with Provenance Capture

» QOrchestrator: execute an FnO pipeline/function
1. Look for implementation
2. Get executable version
3. Execute with data
4. Log provenance

Function

.|I| < Execution — ﬂ

Generated by

timestamps, ...

25

‘ Execute FnO with Provenance Capture

» QOrchestrator: execute an FnO pipeline/function
Look for implementation

Get executable version

Execute with data

Log provenance

Propagate output

S| — .

ok wWh =

¢
Jdh

26

Execute FnO with Provenance Capture

~ Result: Provenance tree

27

Provide understanding

Decoupling data flow from implementation framework using FnO
Automatically convert source code to FnO to not burden developers

Connect dataflow across implementation frameworks

Ensure transparency

Detail how and when data is processed using PROV-O

Make FnO executable to allow provenance capture across frameworks

28

“ructon
Qaa

Use my model!

Any questions?

