
Enhancing Trust in AI-Driven Healthcare: 

Transparent Data Use with Semantics

Pol.Nachtergaele@UGent.be

+32 497 27 92 75

Pol Nachtergaele – PhD Student @ KNoWS UGent



Table of Contents

Patient data comes from many sources

2

Context
AI-Driven Healthcare in a solid environment

Problem
Why is trust important in AI-Driven Healthcare

Solution

Implementation



Patient data comes from many sources

IoT: Wearables, Smart scales, …

Hospital-based HCPs

GP, Physiotherapist, …

Consolidate data in personal data pod

3

Table of Contents



Consolidate data in personal data pod

IoT, Wearables, Smart home sensors, …

Hospital-based HCPs

GP, Physiotherapist, …

How do we use this data?

Patient data comes from many sources

AI-Driven Healthcare

4



Consolidate data in personal data pod

AI-Driven Healthcare

Primary use: direct patient care
Diagnosis

Treatment eligibility

Remote patient monitoring

…

Secondary use: beyond direct care
Medical Research

Policy-making

General trends

…

5



AI-Driven Healthcare

Many data stakeholders

6



AI-Driven Healthcare

Many data stakeholders

Training AI models

Using AI models

Processing personal data with AI

Problem

7



AI-Driven Healthcare

Problem

?

Can I use your data?

How do I exercise my rights?

How do I trust other parties?

Many interested data stakeholders

Processing personal data with AI

8

How do I trust AI models?

How do I trust results?



Problem

Without trust:

Processed results are meaningless

Data doesn’t get used

Increase trust with transparency:

What will you do with my data?

Where does data come from? 

How was data processed?

9

Solution



Solution

?

Problem
Demystify the processing pipeline:

Heterogenous components

Complicated code

10



Problem

?

Solution

Adding a semantic layer on top of a processing pipeline
Provide understanding by describing functionality

Function Ontology (FnO)

Ensure transparency by describing how and when data is 

executed

Provenance Ontology (PROV-O)

Semantic Annotations

Overview

11



Overview

Provide understanding

FnO Structure

From Source Code to FnO

Describing Complex Pipelines

Ensure transparency

PROV-O Structure

Execute FnO with Provenance Capture

Solution: Adding a semantic layer on top of a pipeline

12



Providing understanding
How to show a person what will be done with their data

13



FnO Structure

Describe the data flow independent of the 

implementation framework

Three main components:

https://fno.io/

FnO Function

• Inputs / Outputs

• What does it do

FnO Implementation

• Python Function, 

Docker Image, 

Javascript, …

FnO Composition

• Internal structure

• Complex workflows
composed of

From Source Code to FnO

14

https://fno.io/


FnO Structure

From Source Code to FnO

Developers do not “care” about transparency

Write code → Automatic annotation with FnO → Transparent code

FnO Function

• Inputs / Outputs

• What does it do

FnO Implementation

• Python Function, 

Docker Image, 

Javascript, …composed of FnO Mapping

Parser: Identify data flow from source code Mapper: Extract metadata to enable 

execution

FnO Composition

• Internal structure

• Complex routines

15



From Source Code to FnO

Python example

Parser:

def controller(conf, act_dict_inverse, model, data):

data = process_data(conf, data)
if (data is not None):

if (len(data) > conf['min_duration_s'] * conf['frequency']):
print('Received enough data to proceed with making predictions')
data.set_index("Timestamp", inplace = True)

fs_dict = {}
for name in data.columns:

fs_dict[name] = conf['frequency']

chunks = chunk_data(data=data,fs_dict=fs_dict, min_chunk_dur="15s")

Identify function calls

16



From Source Code to FnO

def controller(conf, act_dict_inverse, model, data):

data = process_data(conf, data)
if (data is not None):

if (len(data) > conf['min_duration_s'] * conf['frequency']):
print('Received enough data to proceed with making predictions')
data.set_index("Timestamp", inplace = True)

fs_dict = {}
for name in data.columns:

fs_dict[name] = conf['frequency']

chunks = chunk_data(data=data,fs_dict=fs_dict, min_chunk_dur="15s")

Python example

Parser: Data flow by connecting variablesIdentify function calls

17



From Source Code to FnO

def controller(conf, act_dict_inverse, model, data):

data = process_data(conf, data)
if (data is not None):

if (len(data) > conf['min_duration_s'] * conf['frequency']):
print('Received enough data to proceed with making predictions')
data.set_index("Timestamp", inplace = True)

fs_dict = {}
for name in data.columns:

fs_dict[name] = conf['frequency']

chunks = chunk_data(data=data,fs_dict=fs_dict, min_chunk_dur="15s")

Python example

Parser: Data flow by connecting variablesIdentify function calls

Mapper: specify file, package, …

18



Function

Python file

From Source Code to FnO

19



From Source Code to FnO

Function

Function

Function

Function

Describing complex pipelines

20



From Source Code to FnO

Describing complex pipelines

Multiple levels of detail:

From pipeline components to individual lines of code

Docker container → Python file → line of code → imported function

Model dataflow across implementation frameworks:

Identify points where frameworks meet: RUN python file.py in dockerfile

Under development

21



Ensuring transparency
How to show a person what happened with their data

22



PROV-O Structure

Activity

• Uses entities to 

create new entities

-------------------------------------

• Execution

Agent

• Responsible over 

an activity

-------------------------------------

• Implementation

Entity

• Things that change 

over time

-------------------------------------

• Data objects

Describe the lifecycle of data, detailing how and 

when it was processed

Three main components:

Generated by

Used

Attributed to

Execute FnO with Provenance Capture

23



PROV-O Structure

Execute FnO with Provenance Capture

Orchestrator: execute an FnO pipeline/function

1. Look for implementation

2. Get executable version

3. Execute with data

Function

Imp

24



Function Imp

Execution

timestamps, …Used

Generated by

Attributed to

Execute FnO with Provenance Capture

Orchestrator: execute an FnO pipeline/function

1. Look for implementation

2. Get executable version

3. Execute with data

4. Log provenance

25



Execution
Function

Execute FnO with Provenance Capture

Imp

Orchestrator: execute an FnO pipeline/function

1. Look for implementation

2. Get executable version

3. Execute with data

4. Log provenance

5. Propagate output

26



Result: Provenance tree

Execution Execution

Execution

Execution

Execute FnO with Provenance Capture

Imp Imp

Imp

Imp

Summary

27



Execute FnO with Provenance Capture

Summary

Provide understanding

Decoupling data flow from implementation framework using FnO

Automatically convert source code to FnO to not burden developers

Connect dataflow across implementation frameworks

Ensure transparency

Detail how and when data is processed using PROV-O

Make FnO executable to allow provenance capture across frameworks 

28

Example



29

Function

Example

Summary



30

Execution

Example

Function



31

Execution

Example

Function

Use my model!



32

Execution

Example

Function



33

Example

Execution



Any questions?

34


